Status of the NuTeV
Electroweak Anomaly

Kevin McFarland
University of Rochester
for the NuTeV Collaboration

“From 0 to Z^0”
12 May 2004, FNAL
NuTeV Collaboration

G. P. Zeller5, T. Adams4, A. Alton4, S. Avvakumov8, L. de Barbaro5, P. de Barbaro8, R. H. Bernstein3, A. Bodek8, T. Bolton4, J. Brau6, D. Buchholz5, H. Budd8, L. Bugel3, J. Conrad2, R. B. Drucker6, B. T. Fleming2, R. Frey6, J.A. Formaggio2, J. Goldman4, M. Goncharov4, D. A. Harris8, R. A. Johnson1, J. H. Kim2, S. Koutsoliotas2, M. J. Lamm3, W. Marsh3, D. Mason6, J. McDonald7, K. S. McFarland8,3, C. McNulty2, D. Naples7, P. Nienaber3, A. Romosan2, W. K. Sakumoto8, H. Schellman5, M. H. Shaevitz2, P. Spentzouris2, E. G. Stern2, N. Suwonjandee1, M. Tzanov7, M. Vakili1, A. Vaitaitis2, U. K. Yang8, J. Yu3, and E. D. Zimmerman2

\textbf{Cincinnati}1, \textbf{Columbia}2, \textbf{Fermilab}3, \textbf{Kansas State}4, \textbf{Northwestern}5, \textbf{Oregon}6, \textbf{Pittsburgh}7, \textbf{Rochester}8

12 May 2004

K. McFarland, Rochester
Measure ν NC/CC ratio to extract ratio of weak couplings
- ratio is experimentally and theoretically robust
- can extract $\sin^2 \theta_W$. NuTeV measurement often quoted this way.

With neutrino and anti-neutrino beams, can form

Paschos - Wolfenstein Relation

$$R^- = \frac{\sigma^\nu_{NC} - \sigma^{\bar{\nu}}_{NC}}{\sigma^\nu_{CC} - \sigma^{\bar{\nu}}_{CC}} = \rho^2 \left(\frac{1}{2} - \sin^2 \theta_W \right) = g_L^2 - g_R^2$$

$$g_{L,R}^2 \equiv u_{L,R}^2 + d_{L,R}^2$$

$$\sigma(\nu_\mu q_{sea}) - \sigma(\bar{\nu}_\mu \bar{q}_{sea}) = 0$$

\Rightarrow Only valence quarks contribute
Beam identifies neutral currents as ν or $\bar{\nu}$
($\bar{\nu}$ in ν mode 3×10^{-4},
ν in $\bar{\nu}$ mode 4×10^{-3})

Beam only has $\sim 1.6\%$ electron neutrinos

\Rightarrow Important background for isolating true NC event
Paschos-Wolfenstein à la NuTeV

\[R^{\nu(\bar{\nu})} = \frac{\sigma^{\nu(\bar{\nu})}_{NC}}{\sigma^{\nu(\bar{\nu})}_{CC}} = \rho_0^2 \left(\frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W (1 + \frac{\sigma^{\nu(\bar{\nu})}_{CC}}{\sigma^{\nu(\bar{\nu})}_{CC}}) \right) \]

\[\frac{dR^{\nu}_{\exp}}{d \sin^2 \theta_W} \rightarrow \text{large} \]

\[R^{\nu}_{\exp} \rightarrow \sin^2 \theta_W \]

\[\frac{dR^{\bar{\nu}}_{\exp}}{d \sin^2 \theta_W} \rightarrow \text{small} \]

\[R^{\bar{\nu}}_{\exp} \rightarrow \text{systematics (i.e. } m_c \text{)} \]

\[\sin^2 \theta_W^{(\text{on-shell})} = 0.2277 \pm 0.0013(\text{stat.}) \pm 0.0009(\text{syst.}) \]

NuTeV result:
- Statistics dominate uncertainty
- Standard model fit (LEPEWWG):
 - \[0.2227 \pm 0.00037, \text{ a } 3\sigma \text{ discrepancy} \]

\[R^{\nu}_{\exp} = 0.3916 \pm 0.0013 \ (SM : 0.3950) \leq 3\sigma \text{ difference} \]

\[R^{\bar{\nu}}_{\exp} = 0.4050 \pm 0.0027 \ (SM : 0.4066) \leq \text{Good agreement} \]
Interpretations Beyond $\sin^2 \theta_W$

- Result can also be in terms of the neutral current couplings of neutrinos
 - NuTeV rate measures $\rho^\nu \rho^q$
 - Γ_{inv} measures $(\rho^\nu)^2$

Model-independent form: effective vq couplings

$$\left(g^{\text{eff}}_{\{L,R\}} \right)^2 \equiv \left(\mathcal{E}^{u, \text{eff}}_{\{L,R\}} \right)^2 + \left(\mathcal{E}^{d, \text{eff}}_{\{L,R\}} \right)^2$$

- Left handed shift: loop level
 - or P-violating tree level
- Right-handed shift
 - tree level
- n.b., R^- constrains $g_L^2 - g_R^2$ (more robust)
NuTeV in the Global Context of Precision Electroweak Measurements?

CERN Courier, May 2004

<table>
<thead>
<tr>
<th>summer 2003</th>
<th>measurement</th>
<th>fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \alpha^{(5)}_{\text{had}} (m_z)$</td>
<td>0.02761 ± 0.00036</td>
<td>0.02767</td>
</tr>
<tr>
<td>m_Z (GeV)</td>
<td>91.1875 ± 0.0021</td>
<td>91.1875</td>
</tr>
<tr>
<td>Γ_Z (GeV)</td>
<td>2.4952 ± 0.0023</td>
<td>2.4960</td>
</tr>
<tr>
<td>σ_{had}^0 (nb)</td>
<td>41.540 ± 0.037</td>
<td>41.478</td>
</tr>
<tr>
<td>R_l</td>
<td>20.767 ± 0.025</td>
<td>20.742</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0.1}$</td>
<td>0.01714 ± 0.00095</td>
<td>0.01636</td>
</tr>
<tr>
<td>$A_{\text{fb}} (P_{\text{s}})$</td>
<td>0.1465 ± 0.0032</td>
<td>0.1477</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21638 ± 0.00066</td>
<td>0.21579</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1720 ± 0.0030</td>
<td>0.1723</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0.3}$</td>
<td>0.0997 ± 0.0016</td>
<td>0.1036</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0.2}$</td>
<td>0.0706 ± 0.0035</td>
<td>0.0740</td>
</tr>
<tr>
<td>A_b</td>
<td>0.925 ± 0.020</td>
<td>0.935</td>
</tr>
<tr>
<td>A_e</td>
<td>0.670 ± 0.026</td>
<td>0.668</td>
</tr>
<tr>
<td>$A_{\text{FB}} (\text{SLD})$</td>
<td>0.1513 ± 0.0021</td>
<td>0.1477</td>
</tr>
<tr>
<td>$\sin^2 \theta_W^{\text{HPT}} (q_{\text{FB}})$</td>
<td>0.2324 ± 0.0012</td>
<td>0.2314</td>
</tr>
<tr>
<td>m_w (GeV)</td>
<td>80.426 ± 0.034</td>
<td>80.385</td>
</tr>
<tr>
<td>Γ_w (GeV)</td>
<td>2.139 ± 0.069</td>
<td>2.093</td>
</tr>
<tr>
<td>m_t (GeV)</td>
<td>174.3 ± 5.1</td>
<td>174.3</td>
</tr>
<tr>
<td>Q_{WS} (Cs)</td>
<td>-72.84 ± 0.46</td>
<td>-72.90</td>
</tr>
</tbody>
</table>

Global Fit courtesy G. Larson

12 May 2004

K. McFarland, Rochester
How does Your Speaker Interpret NuTeV?

The cause of NuTeV’s anomaly is highly unclear

– Beyond SM effects explaining NuTeV are *strained*
 - It’s not SUSY loops or RPV SUSY
 - Hard to fit with leptoquarks
 - “Designer” Z’ is possible
 - Heavy-light ν mixing + more miracles

– So the community focuses on mundane explanations
 - mostly novel QCD effects.
 - I will summarize and argue that none of these are outstanding candidates either

– c.f. (g-2)$_\mu$. “Everyone knows” it is SUSY but result is theoretically shaky due to e^+e^- and τ differences in HVP.
 - g-2 has the opposite problem: too many explanations!
Electroweak Radiative Corrections

Are they a concern?
EW Radiative Corrections

- I see no serious reason to believe effective coupling calculations are inadequate. Comments?

- EM radiative corrections are large
 - Bremsstrahlung from final state lepton in CC is a big correction.
 - Not present in NC; promotes CC events to higher y so they pass energy cut.
 - These should be checked.
 (Diener-Dittmaier-Hollik, Baur-Wackeroth)

\[
\begin{align*}
\{\delta R^\nu, \delta R^\nu, \delta \sin^2\theta_W\} & \approx \\
& \{+.0074,+.0109, -.0030\}
\end{align*}
\]

Status of New Calculations

Diener-Dittmaier-Hollik have completed a calculation

- major new feature over Bardin and Dokuchaeva is improved treatment of initial state mass singularities
- they calculate δR^ν only for $E_{\text{had}} > 10$ GeV, so not directly comparable

Conclusions:

- may not agree with BD
- input parameter and scheme dependence small but not negligible. New systematic.
- Dear DDH, please send code! 😊 Best wishes, NuTeV

Baur and Wackeroth calculation in progress

<table>
<thead>
<tr>
<th>Calculation</th>
<th>$\delta \sin^2 \theta_W (R^\nu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardin&D.</td>
<td>-.0114</td>
</tr>
<tr>
<td>DDH, $\sin^2 \theta_W$, MSbar</td>
<td>-.0130</td>
</tr>
<tr>
<td>DDH, α, MSbar</td>
<td>-.0132</td>
</tr>
<tr>
<td>DDH, $\sin^2 \theta_W$, BD</td>
<td>-.0138</td>
</tr>
<tr>
<td>DDH, α, BD</td>
<td>-.0139</td>
</tr>
</tbody>
</table>
LO Cross-Section Model

1. How does the model work? How is it used?
2. NLO Corrections
Enhanced LO Cross-Section

- “Enhanced” means: include R_L and higher twist terms
- PDFs extracted from CCFR data exploiting symmetries:
 - Isospin symmetry: $u^p=d^n$, $d^p=u^n$, and $s(x) = \bar{s}(x)$
- Data-driven: uncertainties come from measurements

CCFR Data

Enhanced LO Cross-Section

- LO quark-parton model tuned to agree with data:
 - Heavy quark production suppression and strange sea (CCFR/NuTeV $\nu N \rightarrow \mu^+\mu^-X$ data)
 - R_L, F_2 higher twist (from fits to SLAC, BCDMS)
 - d/u constraints from NMC, NUSEA(E866) data
 - Charm sea from EMC F_2^{cc}

Model is fit directly to this data; uncertainties come from data.

12 May 2004

K. McFarland, Rochester
Charged-Current Control Sample

- **Medium** length events, clearly CC but with similar kinematics to NC candidates from CC events, check modeling
- Excellent agreement with prediction

```
<table>
<thead>
<tr>
<th>20</th>
<th>50</th>
<th>100</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Had (GeV)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>0.85</th>
<th>0.9</th>
<th>0.95</th>
<th>1.0</th>
<th>1.05</th>
<th>1.1</th>
<th>1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Data/MC Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\chi^2$/dof = 24.1/23 (0.396 prob)</td>
<td></td>
<td>cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\chi^2$/dof = 27.2/23 (0.248 prob)</td>
<td></td>
<td>cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>20</th>
<th>50</th>
<th>100</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino</td>
<td>Antineutrino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

12 May 2004 K. McFarland, Rochester
NLO QCD Corrections to R^-?

\[R^- \approx \Delta_u^2 + \Delta_d^2 + \frac{1}{2} \left(\frac{U^- - D^- + C^- - S^-}{U^- + D^-} \right) \left[(3\Delta_u^2 + \Delta_d^2) + \frac{\alpha_s}{2\pi} \left(\Delta_u^2 + \Delta_d^2 \right) \left(\frac{C^1}{4} + \frac{3C^2}{4} - C^3 \right) \right] \]

where $U^- = \int x(u - \bar{u})dx$ in target, etc.

$C^i = \text{NLO coefficient fcn.s. in SF } F_i$

$\Delta_{u,d}^2 = \left(\epsilon_{L}^{u,d} \right)^2 - \left(\epsilon_{R}^{u,d} \right)^2$

- So NLO terms only enter multiplied by isovector valence quark distributions
 - for NuTeV this is a numerically negligible correction
 - n.b., NuTeV does not measure precisely R^-
Evaluation of NLO QCD Effects

<table>
<thead>
<tr>
<th></th>
<th>Davidson et al</th>
<th>McFarland-Moch (I)</th>
<th>McFarland-Moch (II)</th>
<th>Kretzer-Reno</th>
<th>Dobrescu-Ellis</th>
</tr>
</thead>
<tbody>
<tr>
<td>NuTeV PDFs</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Include NuTeV PDF Fits</td>
<td>implicitly</td>
<td>explicitly</td>
<td>implicitly</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Gluon, Sea contributions (cancel in R⁻)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Experimental Cuts</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of Target Mass, Heavy Flavor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δNLO</td>
<td>N/A</td>
<td>-0.0003</td>
<td>-0.0003</td>
<td>-0.0004</td>
<td>+0.0015</td>
</tr>
</tbody>
</table>

- **NuTeV full NLO analysis in progress**
 - Ellis and Dobrescu contributed generator code. Thank you! 😊
QCD Symmetry Violations in R^-

What symmetry violations can affect the result?

1. $u \neq d$ in target (neutron excess)
2. asymmetric heavy seas
3. process dependent nuclear effects
Symmetry Violating QCD Effects

- Paschos-Wolfenstein R^- assumptions:
 - Assumes total u and d momenta equal in target
 - Assumes sea momentum symmetry, $s = \bar{s}$ and $c = \bar{c}$
 - Assumes nuclear effects common in W/Z exchange

- To get a rough idea of first two effects, can calculate them for R^-

$$R^- \approx \Delta^2_u + \Delta^2_d$$

where $\delta N = \frac{(N - Z)}{A}$

$$U_v = \int x(u_v^p + d_v^p)dx, \text{ etc.}$$

$$\delta U_v = \int x(u_v^p - d_v^p)dx, \text{ etc.}$$

$$\Delta^2_{u,d} = \left(\varepsilon_{L}^{u,d}\right)^2 - \left(\varepsilon_{R}^{u,d}\right)^2$$

$$\delta S = \int x(s - \bar{s})dx$$

$$\varepsilon_c = \text{kinematic charm CC suppression}$$
Symmetry Violating QCD Effects

Violations could arise from (ref. for theory motivation)

1. $A \neq 2Z$ due to neutron excess (corrected for in NuTeV)
2. Isospin violating PDF’s, $u_p(x) \neq d_n(x)$
 (Sather; Rodinov, Thomas and Londergan; Cao and Signal)
 - Changes d/u of target \Rightarrow mean NC couplings and CC rates
3. Asymmetric heavy-quark sea, $s(x) \neq \bar{s}(x)$
 (Signal and Thomas; Burkhardt and Warr; Brodsky and Ma)
 - Strange sea doesn’t cancel in R^{-}
4. Mechanisms for different nuclear effects in NC/CC
 (Thomas and Miller; Kumano; Schmidt et al; Kulagin)
 - Affects R^{ν}, $R^{-\nu}$ directly

How big must these violations be to explain NuTeV?

- require a $\sim 5\%$ minority ($d^p \neq u^n$) valence quark isospin violation
- or a $\sim 30\%$ momentum difference between strange and anti-strange seas

Asymmetric Strange Sea

1. Why it might be so
2. How it is measured at NuTeV
3. The CTEQ L-P Conjecture
4. Impact on NuTeV $\sin^2\theta_w$
A Very Strange Asymmetry

- Paschos-Wolfenstein relation assumes that strange sea is symmetric, i.e., no “valence” strange distribution
 - if there were on, this would be a big deal since it is an isovector component of the PDFs (charm sea is heavily suppressed)

- 30% more momentum in strange than anti-strange seas would be enough to make NuTeV agree with SM

- Why might one think that the strange and anti-strange seas would be different?

- Non-perturbative QCD effects could generate a strange vs. antistrange momentum asymmetry in the nucleon
 - decreasing at higher Q^2

Brodsky and Ma, Phys. Let. B392
How Does NuTeV Measure This?

\[(-\nu_{\mu} N \rightarrow \mu^+ \mu^- X) \]

- \(\mu^\pm \) from semi-leptonic charm decay
 - \(\nu \) beam: \(s, d \) (Cabbibo supp.) \(\rightarrow c \)
 - \(\bar{\nu} \) beam: \(\bar{s}, \bar{d} \) (Cabbibo supp.) \(\rightarrow \bar{c} \)

- Fits to NuTeV and CCFR \(\nu \) and \(\bar{\nu} \) dimuon data can measure the strange and antistrange seas separately
 - NuTeV separate \(\nu \) and \(\bar{\nu} \) beams important for reliable separation of \(s \) and \(\bar{s} \)
The CTEQ Lepton-Photon Conjecture

- The CTEQ (Olness, Tung et alia) NLO/LO fit
 - Small LO asymmetry, ~+10% (CTEQ NLO d-quark PDFs)
 - inconsistency with zero not claimed
 - could explain at least part of NuTeV anomaly
 - approximately one out of the three sigma
 - uses inclusive data and NuTeV/CCFR dimuons
 - claim is that dimuons are dominant constraint
- NuTeV analyses show zero or negative asymmetry
 - CTEQ pointed out mistakes in NuTeV evolution, concerns about strangeness not being conserved outside of measured region
 - They are good points; do they matter?
Updated NuTeV NLO Analysis

- Have incorporated CTEQ strange “valence” evolution and CTEQ parameterizations
 - thanks esp. to Amundson, Kretzer, Olness & Tung

- NuTeV analysis is consistent with zero, slightly negative
 - NuTeV: - (5-10)%
 - c.f. CTEQ-like result of +10% in black curve
 - χ^2 NuTeV is 37/37
 - χ^2 CTEQ is 55/40

- CTEQ LP Conjecture inconsistent with this analysis
 courtesy heroic efforts of D. Mason, P. Spentzouris
Nuclear Effects

1. Introduction
2. Constraints on Effects
We use NuTeV CC data to fit parton distributions
- PDFs that enter are already on iron
- Need to worry about nuclear effects that could be different for W and Z exchange?

NuTeV kinematics are high Q^2 valence distributions
- <E_\nu> ~ 100 GeV
- Sea cancels in R^-}

Fermi motion, Pomeron component of shadowing process independent. EMC?
There is not arbitrary freedom in the data to introduce process dependent nuclear effects.

CC and EM F_2 on iron are in agreement!

No analogous independent test that EM and NC would have common nuclear effects.
Nuclear Effects (cont’d)

- Shadowing due to VMD would be different EM, NC and CC
 (Miller and Thomas, hep-ex/0204007)
 - Weak evidence for predicted $1/Q^2$ dependence in the NuTeV
 kinematic region $x > 0.01$ (NMC)
 - But lower x, Q^2 data suggests VMD
 (Melnitchouk and Thomas, hep-ex/0208016)
 - Low-x phenomena like VMD affect mainly sea quarks and the
 effect is canceled in R^{-}
 - Would increase both R^{ν} and $R^{-\nu}$
 - This model would make a very large R^{ν} shift (4.5σ from SM)
 - A much larger effect is needed for R^{-}

Shadowing effects neutrino and anti-neutrino data in the same way. Systematic controlled by R^{-} technique.
Isospin Violation

1. What is required and what does data allow?
2. Conclusions
Isospin Violation in PDFs

- Naively, effect is \(\sim (m_d - m_u)/M_N = 0.5\% \)
 - roughly, a 5% momentum excess of \(d_v^p \) over \(u_v^n \) quarks would move NuTeV to SM value

- Theory offers little guidance
 - full range of bag models predict 0-2% effects

- Little experimental constraint
 - valiant effort by MRST!
 - they conclude zero, negative or positive effect all allowed in fit
 - best fit moves NuTeV toward SM for whatever that is worth!

(Rodionov, Thomas, Londergan, MPL A9 1799)

Martin et al, hep-ph/0308087
This possibility is NOT like the others…

- Note that if there is no constraint, this is a perfectly viable explanation for NuTeV anomaly
 - Size of effect may be “unexpected”, but that doesn’t mean it is impossible or inconsistent with QCD

- **NuTeV may have found large isospin violation**

- One should pursue all available means of measuring this. More later…

- Is there impact on collider PDFs?
 - e.g., one would question NUSEA, NMC d/u results in light of this since they come from isospin symmetry assumption…
Corroborating Data and Impact of Future Results

Is there other evidence of Mundane Physics that would affect NuTeV?

What can we learn in the future?
PDF and Nuclear Data

Strange Sea Asymmetry, $u_p \neq d_p$, nuclear effects
- For the most part, I would argue the data in hand already constrains these possibilities well enough
- Any continuing debate is over interpretation
- Caveat: no independent check of Z^0 exchange nuclear effects (by definition). Rely on νCC and $l^\pm NC$.

Isospin violation in PDFs, e.g., $u_n \neq d_p$
- Almost completely unconstrained, even at levels that would appear *a priori* ludicrous.

 Martin et al, hep-ph/0308087
- FNAL-E906 $\pi^\pm p$, $\pi^\pm d$ Drell-Yan can directly probe this
- Re-analysis of old ν bubble-chamber data? νp vs. νn
Other Precision EW Data

- e-Baryon scattering is undergoing a re-emergence!
 - QWEAK at JLab (ep), DISParity proposal (eD)
 - These experiments suffer from many of QCD uncertainties that are worries in interpreting NuTeV. Worse because lower Q^2?

- Future neutrino experiments will be very very tough
 - Is there any point to re-measuring this in ν DIS?
 - More statistics would help, but NuTeV systematic floor is 0.0008 (c.f., total NuTeV error of 0.0016)
 - Maybe worth doing if there were a 1 TeV ν beam at LHC.
 - NOMAD is trying this without antineutrinos at low Q^2. Vaya con dios…

- ν-e scattering would be a great measurement, but it’s not easy
 - Cross-section is down by factor of a few 10^3
 - Normalization? Hard in conventional or μ-based beams
 - Reactor? Definitely tough; close to NuTeV precision in $\sin^2\theta_W$ looks achievable.

Bigi et al, hep-ph/0106177
Conrad, Link & Shaevitz, hep-ph/0403048
Future Discoveries?

Always the possibility of a future discovery impacting the NuTeV interpretation

- LHC or TeVatron finds a Z'
- Giga-Z confirms and strengthens small deficit in invisible width
- ...

12 May 2004

K. McFarland, Rochester
Summary

For NuTeV the SM predicts \(0.2227 \pm 0.0003\) but we measure

\[
\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0013\text{(stat.)} \pm 0.0009\text{(syst.)}
\]

- No obvious experimental problems.
- “Old physics” effects are a possibility
 - But no attractive explanation now exists
 - Very large isospin violation is a possibility…
 - Nuclear effects? Constrained by data.
 - NLO seems unlikely, but…
 - QED corrections large. Should be checked…
- Beyond SM Physics?
 - Candidate explanations are unattractive, in conflict with data or require many miracles…
- Either way, perhaps everyone can agree that NuTeV has found something unattractive!